18.09.2018
Видео: как правильно выбрать карнизы для штор
Литература
Лучшие бюджетные септики для дачи
Сравнение основных показателей
Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.
Материал | Плотность кг/м3 | Теплопроводность | Гигроскопичность | Минимальный слой, см |
Пенополистирол | 30-40 | Очень низкая | Средняя | 10 |
Пластиформ | 50-60 | Низкая | Очень низкая | 2 |
60-70 | Низкая | Средняя | 5 | |
Пенопласт | 35-50 | Очень низкая | Средняя | 10 |
25-32 | низкая | низкая | 20 | |
35-125 | Низкая | Высокая | 10-15 | |
130 | Низкая | высокая | 15 | |
500 | Высокая | Низкая | 20 | |
Ячеистый бетон | 400-800 | Высокая | Высокая | 20-40 |
Пеностекло | 100-600 | Низкая | низкая | 10-15 |
Таблица 1 Сравнение теплоизоляционных свойств материалов
При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.
Коэффициент теплопроводности
Для количественной оценки такого параметра, используются специальные коэффициенты теплопроводности, строго задекларированные в СНИП. Например, коэффициент теплопроводности бетона равен 0,15-1,75 ВТ/(м*С) в зависимости от типа бетона. Где С – градусы Цельсия. На данный момент расчёт коэффициентов есть практически для всех существующих типов строительного сырья, применяющихся при строительстве. Коэффициенты теплопроводности строительных материалов очень важны в любых архитектурно-строительных работах.
Для удобного подбора материалов и их сравнения, используются специальные таблицы коэффициентов теплопроводности, разработанные по нормам СНИП(строительные нормы и правила). Теплопроводность строительных материалов, таблица на которых будет приведена ниже, очень важна при строительстве любых объектов.
Древесные материалы. Для некоторых материалов параметры будут приведены как вдоль волокон(Индекс 1, так и поперёк – индекс 2)
Материал | Плотность | Теплопроводность |
Берёза | 510-770 кг / м3 | 1250 Вт/кг*С |
Дуб 1 | 700 кг / м3 | 0,23 Вт / кг*С |
Клён | 620-750 кг / м3 | 0,19 Вт / кг*С |
Дуб 2 | 700 кг / м3 | 0,1 Вт / кг*С |
Сосна 1 и ель 1 | 500 кг / м3 | 0,18 Вт / кг*С |
Сосна 2 и ель 2 | 500 кг / м3 | 0,09 Вт/кг*С |
Лиственница | 670 кг / м3 | 0,13 Вт / кг*С |
Липа | 360-650 кг / м3 | 0,15 Вт / кг*С |
Пихта | 450-550 кг / м3 | 0,1-0,26 Вт / кг*С |
T ополь | 350-500 кг / м3 | 0,17 Вт / кг*С |
Различные типы бетона.
Вид бетона | Плотность | Теплопроводность |
Сплошной | — | 1,75 Вт / кг*С |
Теплоизоляционный | 500 кг / м3 | 0,18 Вт / кг*С |
На основе песка | 1800-2500 кг / м3 | 0,7 Вт / кг*С |
На основе гравия | 2400 кг / м3 | 1,51 Вт / кг*С |
Силикатный | 1800 кг / м3 | 0,81 Вт / кг*С |
Железобетон | 2500 кг / м3 | 1,7 Вт / кг*С |
Газо-и пен o бетон | 300-1000 кг / м3 | 0,08-0,21 Вт / кг*С |
Различные виды строительного и декоративного кирпича.
Тип кирпича | Плотность | Теплопроводность |
Огнеупорный | 1000-2000 кг / м3 | 0,5-0,8 Вт / кг*С |
Строительный | 800-1500 кг / м3 | 0,23-0,3 Вт / кг*С |
Изоляционный | — | 0,14 Вт / кг*С |
Облицовочный | 1800 кг / м3 | 0,93 Вт / кг*С |
Пустотелый | — | 0,44 Вт / кг*С |
Диатомовый | 500 | 0,8 Вт/кг*С Вт/кг*С |
Силикатный | 1000-2200 кг / м3 | 0,5-1,3 Вт / кг*С |
Сплошной | — | 0,67 Вт / кг*С |
Шлаковый | 1100-1400 кг / м3 | 0,58 Вт / кг*С |
Трепельный | 700-1300 кг / м3 | 0,27 Вт / кг*С |
Клинкерный | 1800-2200 кг / м3 | 0,8-1,3 Вт / кг*С |
Если объяснять на пальцах
Для наглядности и понимания, что такое теплопроводность, можно сравнить кирпичную стену, толщиной 2 м 10 см с другими материалами. Таким образом, 2,1 метра кирпича, сложенного в стену на обычном цементно-песчаном растворе равны:
- стене толщиной 0,9 м из керамзитобетона;
- брусу, диаметром 0,53 м;
- стене, толщиной 0,44 м из газобетона.
Если речь заходит от таких распространённых утеплителях, как минеральная вата и пенополистирол, то потребуется всего 0,18 м первой теплоизоляции или 0,12 м второй, чтобы значения теплопроводности огромной кирпичной стены оказались равными тонюсенькому слою теплоизоляции.
Сравнительная характеристика теплопроводности утеплительных, строительных и отделочных материалов, которую можно произвести, изучив СНиПы, позволяет проанализировать и правильно составить утеплительный пирог (основание, утеплитель, финишная отделка). Чем ниже теплопроводность, тем выше цена. Ярким примером могут послужить стены дома, сложенные из керамических блоков или обычного высококачественного кирпича. Первые имеют теплопроводность всего 0,14 – 0,18 и стоят намного дороже любого, самого лучшего кирпича.
Разные материалы имеют различную теплопроводность, и чем она ниже, тем меньше теплообмен внутренней среды обитания с внешней. Это значит, что зимой в таком доме сохраняется тепло, а летом – прохлада
Теплопроводность — количественная характеристика способности тел к проведению тепла. Для того чтобы иметь возможность сравнения, а также точных расчетов при строительстве, представляем цифры в таблице теплопроводности, а также прочности, паропроницаемости большинства строительных материалов.
Универсальный пуфик
Синий + желтый
Понятие теплопроводности
Теплопроводность – процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.
Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.
Понятие теплопроводности на практике
Теплопроводность учитывается на этапе проектирования здания
При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление
Во время эксплуатации будут существенно экономиться денежные средства на отопление.
Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.
Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи
Зрительно это можно увидеть на фотографии в начале статьи.
Утеплители для стен
Утеплители используются, когда не хватает тепловой сопротивляемости наружных стен. Обычно для создания комфортного микроклимата в помещениях достаточно толщины 5-10 см.
Значение коэффициента λ приводится в следующей таблице.
Теплопроводность измеряет способность материала пропускать тепло через себя. Она сильно зависит от состава и структуры. Плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками.
Факторы, влияющие на теплопроводность
Коэффициент теплопроводности материала зависит от нескольких факторов:
При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться
Температура материала
С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.
Фазовые переходы и структура
Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).
Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.
Электрическая проводимость
Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).
Процесс конвекции
Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.
Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.
Коэффициент теплопроводности строительных материалов – таблицы
Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.
Таблица коэффициентов теплоотдачи материалов. Часть 1
Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов
Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.
Таблица теплопроводности кирпича
Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.
Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)
Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.
Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.
Теплопроводность разных видов кирпичей
Таблица теплопроводности металлов
Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.
Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3
Таблица теплопроводности дерева
Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.
Проводимость тепла дереваПрочность разных пород древесины
Таблица проводимости тепла бетонов
Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.
Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов
Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.
Какой коэффициент теплопроводности у воздушной прослойки
В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу
Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины
Таблица проводимости тепла воздушных прослоек
Теплопроводность – что это такое
Теплопроводностью называется способность всех видов газов, жидкости или материалов передавать тепло. Это значит, что когда объект нагревается с одной стороны, он трансформируется в теплопроводник, т.к. передает свою энергию дальше. При охлаждении процесс происходит также.
Например, если во время приготовления пищи перемешивать продукты деревянной лопаткой, то изменений в температуре не последует. Но, если для этих целей использовать кухонную утварь из металла, то она быстро нагреется так, что держать ее станет в руке невозможно. Таких примеров теплопроводности привести можно немало.
Объяснение этого с точки зрения физики: тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. Причем ей требуется время, чтобы пройти через стройматериал. Чем больше его нужно, тем ниже скорость передачи тепла.
Внимание!
Если температура по обе стороны используемого материала одинаковая, то переход тепловой энергии не состоится.
Так,
- теплопроводность кирпича и стали составляет 0,56 и 58Вт/м●К соответственно;
- древесины – 0,09-0,1;
- песка – 0,35
Можно заметить, что не все материалы обладают одинаковой теплоэффективностью, это зависит от факторов:
- Пористая структура свидетельствует о ее неоднородности и наличии воздуха в порах.
- Структура пор – небольшие размеры и их замкнутость приводит к снижению теплового потока.
- Плотность – чем она выше, тем больше коэффициент проводимости тепла.
- Влажность – негативный фактор, который повышает скорость теплопередачи. Поэтому надо качественно произвести гидроизоляцию сооружения, правильно сделать вентиляцию и использовать влагоустойчивые стройматериалы.
Формула теплопроводности создана с учетом воздействия температуры на это свойство материала. Выглядит она так:
λ=λ0●(1+b●t), где
- λ0 — коэффициент теплопроводности при 0°С, измеряется который в Вт/м●℃;
- b – справочная величина температуры;
- t – непосредственно температура.
Коэффициент теплопроводности
Зачастую в паспорте стройматериалов указан коэффициент теплопроводности – единица измерения которого Вт/(м●℃). Она характеризует любой материал как проводник тепла. В формуле она определяется греческой буквой λ.
Внимание!
Часто в формулах можно увидеть не градусы по Цельсию, а по Кельвину, обозначающиеся как K. Суть от этого не меняется.
Данный коэффициент демонстрирует способность используемого материала передавать тепло на определенную дистанцию за время. При этом показатель определяет именно сырье, а его размеры значения не имеют.
Рассчитать коэффициент теплообмена можно для материала строительного и иного назначения. Например, коэффициент теплоотдачи стали использовать как теплоотвод или теплообменник. Но для больше части стройматериалов ситуация обратная – чем меньше этот показатель для стен, тем меньше тепла здание потеряет зимой.
Сопротивление теплопередаче
Коэффициент теплопередачи – это показатель, характеризующий используемый материал. Но, как показывает практика, лучше оперировать какой-то величиной, которая будет описывать теплопроводные способности определенного сооружения. Иными словами, учитываться должны особенности его строения и параметров.
Термическое сопротивление – это и есть такая величина. Можно считать, что она обратная коэффициенту теплопроводности и учитывающая толщину стройматериала. Для этого показателя существует следующее обозначение – R. Формула при этом выглядит следующим образом:
R = h/λ, где
- R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²•℃/Вт;
- h — толщина этого слоя в метрах;
- λ — коэффициент теплопроводности материала конструкции, Вт/(м•℃).
Часто стены сооружают многослойными, один слой при этом – утеплитель с низким коэффициентом теплопроводности. Благодаря такому подходу нужный показатель повышается. Это связано с тем, что надо прибавить все слои сопротивления теплопередаче, из которых состоит ограждающая конструкция. Не стоит забывать и о суммировании приграничных слоев воздуха внутри и снаружи сооружения.
Методы определения КТП
Существует 2 метода определения КТП:
- Стационарный – предполагает работу с параметрами, которые не будут изменяться в течение длительного времени или изменяющиеся незначительно. Преимущество этого метода в высокой точности вычисления результата. К недостаткам относится сложность регулировки эксперимента, большое количество используемых термопар, а также длительность затраченного времени на подготовку и проведение опыта. Этот метод подходит для вычисления КТП жидкостей и газов, если не учитывать передачу энергии конвекцией и излучением.
- Нестационарный – визуально выглядит более простой и требует для выполнения от 10 до 30 минут. Нашла своё широкое применение из-за того, что в процессе исследования можно узнать не только КТП, но и температурную проводимость, а также теплоёмкость образца.
Для проведения анализа теплопроводности строительных материалов применяются электронные приборы, например, ИТП-МГ4 «Зонд». Такие средства для вычисления КТП отличаются рабочим диапазоном температур, а также процентом погрешности.
Видео описание
Как выполняется вычисление КТП с помощью электронного прибора, смотрите в видео:
Таблица тепловой эффективности материалов
Большинство сырья, которое используется при строительстве, не нуждается в самостоятельном измерении КТП. Для этого существует таблица теплопроводности материалов, которая показывает основные характеристики, требуемые для расчёта тепловой эффективности.
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м*градусы) | ТеплоёмкостьДж/(кг*градусы) |
Железобетон | 2500 | 1,7 | 840 |
Бетон на гравии или щебне из природного камня | 2400 | 1,51 | 840 |
Керамзитобетон лёгкий | 500-1200 | 1,19-0,45 | 840 |
Кирпич строительный | 800-1500 | 0,24-0,3 | 800 |
Силикатный кирпич | 1000-2200 | 0,51-1,29 | 750-840 |
Железо | 7870 | 70-80 | 450 |
Пенополистирол Пеноплэкс | 110-140 | 0,042-0,05 | 1600 |
Плиты минераловатные | 150-250 | 0,043-0,063 | — |
Большинство материалов отличается по своему составу. Например, теплопроводность кирпича зависит от того, из чего он сделан. Клинкерный имеет КТП от 0,8 до 1,6, а кремнезёмный 0,15. Также есть отличия по методу изготовления и стандартам ГОСТ.
Пенополистирол разной толщиныИсточник cmp24.com.ua
Коротко о главном
Коэффициент теплопроводности – это скорость передачи тепла через материал в течение определённого времени.
Знание КТП нужно для улучшения тепловой эффективности конструкции. Например, если она должна быстро отдавать тепло, то её нужно делать из сырья с высокой передачей энергии, а для закрытых помещений наоборот нужны дополнительные утеплители. Это поможет сэкономить деньги на отоплении.
На теплопроводность материала влияет его плотность, влажность и волокнистость.
Расчет многослойной конструкции
При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов
Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.
Rобщ= R1+ R2+…+ Rn+ Ra, где:
R1-Rn- термическое сопротивление слоев разных материалов;
Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:
https://youtube.com/watch?v=0bwsJcTqaXQ
Рейтинг лучших производителей диванов
Номинация | место | фабрика | рейтинг |
Лучшие фабрики недорогих диванов | 1 | 4.8 | |
2 | 4.7 | ||
3 | 4.6 | ||
4 | 4.5 | ||
Лучшие фабрики диванов в среднем и премиальном ценовых сегментах | 1 | 4.9 | |
2 | 4.9 | ||
3 | 4.8 | ||
4 | 4.7 | ||
5 | 4.7 | ||
6 | 4.6 |
Фартук или скинали
Сравнение паропроницаемости утеплителей
Высокая паропроницаемость=отсутствие конденсата.
Паропроницаемость – это способность материала пропускать воздух, а вместе с ним и пар. То есть теплоизоляция может дышать. На этой характеристике утеплителей для дома последнее время производители акцентируют много внимания. На самом деле высокая паропроницаемость нужна только при . Во всех остальных случаях данный критерий не является категорически важным.
Характеристики утеплителей по паропроницаемости, таблица:
Сравнение утеплителей для стен показало, что самой высокой степенью паропроницаемости обладают натуральные материалы, в то время как у полимерных утеплителей коэффициент крайне низок. Это свидетельствует о том, что такие материалы как ППУ и пенопласт обладают способностью задерживать пар, то есть выполняют . Пеноизол – это тоже своего рода полимер, который изготавливается из смол. Его отличие от ППУ и пенопласта заключается в структуре ячеек, которые открытие. Иными словами, это материал с открытоячеистой структурой. Способность теплоизоляции пропускать пар тесно связан со следующей характеристикой – поглощение влаги.
Сравнение утеплителей
Выбрать лучший из трех представленных утеплителей не сложно, достаточно просто сравнить технические характеристики материалов.
Теплопроводность
Характеристика, показывающая количество проходящей за единицу времени (секунду) через 1 квадратный метр материала количества теплоты при единичном температурном градиенте.
Сравнение коэффициентов теплопроводности утеплителей:
- PIR-плиты и напыляемый пенополиуретан 0,022 Вт/м°К;
- Вспененный фольгированный полиэтилен 0,038 – 0,051 Вт/м°К.
Теплопроводность PIR сопоставима с PUR-изоляцией и намного ниже, чем у прочих теплоизоляционных материалов. У вспененного полиэтилена теплоизолирующие свойства вдвое ниже, чем у PIR и PUR.
Чем ниже теплопроводность материала, тем, соответственно, лучше показатели теплосбережения или энергоэффективности. Используя для утепления дома, бани или другого помещения утеплитель с рекордно низкой теплопроводностью, можно сэкономить свободное внутреннее пространство за счет уменьшения толщины материала. Кроме того, энергоэффективный утеплитель быстро окупает себя в финансовом плане, так как существенно снижаются расходы на отопление и кондиционирование комнат.
Плиты Logicpir кашированы паронепроницаемой алюминиевой фольгой
Прочность на сжатие и жесткость
Жесткость, прочность, отсутствие деформации при высоких нагрузках позволяют использовать материал не только для утепления полов под тяжелые мокрые стяжки, но и на эксплуатируемых кровлях, в том числе в регионах с высокими снеговыми нагрузками.
Прочность на сжатие при 10% деформации у плит PIR составляет 150 кПа или 15 тонн на 1 кв. метр. Пенополиизоцианурат не сминается и не крошится в течение всего срока службы, геометрические размеры стабильны даже при высоких нагрузках.
PIR плиты применяются при обустройстве эксплуатируемых кровель всех типов
У вспененного полиэтилена прочность на сжатие в 4 раза ниже и составляет всего 35 кПа.
Жесткость материала не менее важна при утеплении стен. Если изолятор сомнется в течение периода эксплуатации, верхняя часть стен останется неутепленной, что повлечет ряд проблем, одна из которых — существенное увеличение затрат на отопление помещений.
Утеплитель может потерять жесткость под воздействием влаги, плесени, вредителей и других факторов. Отсюда следует вывод — качественный материал, такой как Logicpir, отличается не только жесткостью, но и биологической стабильностью, минимальным процентом влагопоглощения, биологической и химической инертностью.
Плиты Logicpir монтируются без особых трудозатрат
Пожаробезопасность
Пенополиизоциануратные утеплители (PIR) относятся к группе горючести Г1. Высокие пожарно-технические характеристики как непосредственно самих плит, так и утеплённых конструкций достигается благодаря теомореактивности полимера. Под воздействием пламени верхний слой утеплителя коксуется то есть превращается в обугленную корку (пористую углеродную матрицу), препятствующую дальнейшему распространению огня.
PIR-плита — испытание огнём
Вспененный полиэтилен назвать пожаробезопасным материалом нельзя. Этот материал относится к реактопластам — химическим полимерам, которые под воздействием пламени превращаются в горящий расплав.
Сравнив утеплители, не сложно понять, почему именно PIR-плиты настолько востребованы в мире. Полиизоциануратными плитами утеплено уже более 40% кровель в Западной Европе и более 76% в Северной Америке. Технические характеристики материала близки к идеалу, это делает его востребованным в жилом, коммерческом, промышленном строительстве, сельском хозяйстве (при возведении агропромышленных и животноводческих комплексов).
Механические способы
Простой способ изготовления мягких пуфов
Нам часто не хватает времени и желания разбираться с выкройками, поэтому мягкие пуфики можно смастерить так:
- Из ткани вырезаем два круга, которые по своему диаметру должны быть одинаковыми с диаметром низа и верха изделия. Обязательно оставляйте припуски на швы;
- Далее вырезаем две одинаковые детали прямоугольной формы, ширина которых – это высота пуфика, длина – 1/2 длины окружности нижней и верхней частей;
- Сшиваем друг с другом прямоугольные детали по ширине с одного края до получения длинной ленты;
- К ней приметываем один круг, прострачиваем по шву, делаем эту же манипуляцию с другим кругом. При получении неровного шва можно обшить его с помощью декоративной каймы.
Чехол для изделия таким методом делается просто и быстро. Его набивают всяким мягким материалом, который найдется под рукой. В конце процесса в не застроченные края ленты, имеющей форму прямоугольника, вшивается молния.
Таблица теплопроводности материалов на Т-Ч
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Текстолит | 1300…1400 | 0.23…0.34 | 1470…1510 |
Термозит | 300…500 | 0.085…0.13 | — |
Тефлон | 2120 | 0.26 | — |
Ткань льняная | — | 0.088 | — |
Толь (ГОСТ 10999-76) | 600 | 0.17 | 1680 |
Тополь | 350…500 | 0.17 | — |
Торфоплиты | 275…350 | 0.1…0.12 | 2100 |
Туф (облицовка) | 1000…2000 | 0.21…0.76 | 750…880 |
Туфобетон | 1200…1800 | 0.29…0.64 | 840 |
Уголь древесный кусковой (при 80°С) | 190 | 0.074 | — |
Уголь каменный газовый | 1420 | 3.6 | — |
Уголь каменный обыкновенный | 1200…1350 | 0.24…0.27 | — |
Фарфор | 2300…2500 | 0.25…1.6 | 750…950 |
Фанера клееная (ГОСТ 3916-69) | 600 | 0.12…0.18 | 2300…2500 |
Фибра красная | 1290 | 0.46 | — |
Фибролит (серый) | 1100 | 0.22 | 1670 |
Целлофан | — | 0.1 | — |
Целлулоид | 1400 | 0.21 | — |
Цементные плиты | — | 1.92 | — |
Черепица бетонная | 2100 | 1.1 | — |
Черепица глиняная | 1900 | 0.85 | — |
Черепица из ПВХ асбеста | 2000 | 0.85 | — |
Чугун | 7220 | 40…60 | 500 |
Сравнение основных показателей
Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.
Материал | Плотность кг/м3 | Теплопроводность | Гигроскопичность | Минимальный слой, см |
Пенополистирол | 30-40 | Очень низкая | Средняя | 10 |
Пластиформ | 50-60 | Низкая | Очень низкая | 2 |
Пенофол | 60-70 | Низкая | Средняя | 5 |
Пенопласт | 35-50 | Очень низкая | Средняя | 10 |
Пеноплекс | 25-32 | низкая | низкая | 20 |
Минеральная вата | 35-125 | Низкая | Высокая | 10-15 |
Базальтовое волокно | 130 | Низкая | высокая | 15 |
Керамзит | 500 | Высокая | Низкая | 20 |
Ячеистый бетон | 400-800 | Высокая | Высокая | 20-40 |
Пеностекло | 100-600 | Низкая | низкая | 10-15 |
Таблица 1 Сравнение теплоизоляционных свойств материалов
Из приведенных видов лидером в рейтинге считается пенопласт. Материал имеет неоспоримые достоинства, в том числе доступную стоимость.
При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.
В заключение
Выводы
При таком разнообразии всевозможных теплоизоляций таблица теплопроводности строительных материалов как нельзя лучше поможет вам решить вопрос с выбором. Тёплого и комфортного вам жилья!
Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.
Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.
Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления
. Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.