Отопление дома с помощью гелиосистемы (гелиоустановки). Принцип работы солнечного коллектора, как выбрать для дома

Гелиосистема для горячего водоснабжения: принцип работы и устройство, типы, особенности монтажа

Виды гелиосистем

Существуют различные виды солнечных коллекторов, но наибольшее распространение получили плоские коллекторы и коллекторы с вакуумными трубками.

В мировой практике наиболее широко распространены малые системы солнечного теплоснабжения. Как правило, такие системы включают в себя солнечные коллекторы общей площадью 2-8 м2, бак-аккумулятор, ёмкость которого определяется площадью используемых коллекторов, циркуляционный насос или насосы (в зависимости от типа тепловой схемы) и другое вспомогательное оборудование. В небольших системах циркуляция теплоносителя между коллектором и баком-аккумулятором может осуществляться и без насоса, за счёт естественной конвекции (термосифонный принцип). В этом случае бак-аккумулятор должен располагаться выше коллектора. Простейшим типом таких установок является коллектор, спаренный с баком-аккумулятором, расположенным на верхнем торце коллектора. Системы такого типа используют обычно для нужд горячего водоснабжения в небольших односемейных домах коттеджного типа осуществляется с помощью насоса. Такие системы используют для нужд и горячего водоснабжения, и отопления. Как правило, в активных системах, снимающих лишь часть нагрузки отопления, предусматривают дублирующии источник тепла, использующий электроэнергию или газ.

Сравнительно новым явлением в практике использования солнечного теплоснабжения являются крупные системы, способные обеспечить горячим водоснабжением и отоплением многоквартирные дома или целые жилые кварталы. В таких системах используются либо суточное, либо сезонное аккумулирование тепла. Суточное аккумулирование предполагает возможность работы системы с использованием накопленного тепла в течение нескольких суток, сезонное — в течение нескольких месяцев.

Для сезонного аккумулирования тепла используют большие подземные резервуары, наполненные водой, в которые сбрасываются все излишки тепла, получаемого от коллекторов в течение лета. Другим вариантом сезонного аккумулирования является прогрев грунта с помощью скважин с трубами, по которым циркулирует горячая вода, поступающая от коллекторов.

Отопление при помощи Солнца – давняя мечта человечества, периодически страдающего то от избытка солнечной энергии, то от ее недостатка. Гелиосистемы – попытка реализовать это желание на бытовом уровне.

Принцип работы и конструкционные особенности

Современные гелиосистемы – один из видов альтернативных источников получения тепла. Они применяются в качестве вспомогательного отопительного оборудования, перерабатывающего солнечное излучение в полезную владельцам дома энергию.

Они способны полностью обеспечить горячее водоснабжение и отопление в холодное время года только в южных регионах. И то, если занимают достаточно большую площадь и установлены на открытых, не затененных деревьями площадках.

Несмотря на большое количество разновидностей, принцип работы у них одинаковый. Любая гелиосистема представляет собой контур с последовательным расположением приборов, и поставляющих тепловую энергию, и передающих ее потребителю.

Основными рабочими элементами являются солнечные батареи на фотоэлементах или солнечные коллекторы.  Технология сборки солнечного генератора на фотопластинах несколько сложнее, чем трубчатого коллектора.

В этой статье мы рассмотрим второй вариант – коллекторную гелиосистему.

Солнечные коллекторы пока служат вспомогательными поставщиками энергии. Полностью переключать отопление дома на гелиосистему опасно из-за невозможности прогнозировать четкое количество солнечных дней

Коллекторы представляют собой систему трубок, соединенных последовательно с выходной и входной магистралью или выложенных в виде змеевика. По трубкам циркулирует техническая вода, воздушный поток или смесь воды с какой-либо незамерзающей жидкостью.

Циркуляцию стимулируют физические явления: испарение, изменение давления и плотности от перехода из одного агрегатного состояния в другое и др.

Принцип действия солнечных коллекторов основан на получении и накапливании солнечной энергии, сообщаемой теплоносителю (+)

Сбор и аккумуляция солнечной энергии производится абсорберами. Это либо сплошная металлическая пластина с зачерненной наружной поверхностью, либо система отдельных пластин, присоединенных к трубкам.

Для изготовления верхней части корпуса, крышки, используются материалы с высокой способностью к пропусканию светового потока. Это может быть оргстекло, подобные полимерные материалы, закаленные виды традиционного стекла.

Для того чтобы исключить потери энергии с тыльной стороны прибора в короб укладывается теплоизоляция

Надо сказать, что полимерные материалы довольно плохо переносят влияние ультрафиолетовых лучей. Все виды пластика имеют достаточно высокий коэффициент теплового расширения, что часто приводит к разгерметизации корпуса. Поэтому использование подобных материалов для изготовления корпуса коллектора стоит ограничить.

Вода в качестве теплоносителя может применяться только в системах, предназначенных для поставки дополнительного тепла в осенне/весенний период. Если планируется круглогодичное использование гелиосистемы перед первым похолоданием техническую воду меняют на смесь ее с антифризом.

В воздушных гелиосистемах в качестве теплоносителя используется воздух. Каналы для его движения можно сделать из обычного профлиста (+)

Если солнечный коллектор устанавливается для обогрева небольшого строения, не имеющего связи с автономным отоплением коттеджа или с централизованными сетями, сооружается простейшая одноконтурная система с нагревательным прибором в начале ее.

В цепочку не включают циркуляционные насосы и нагревательные устройства. Схема предельно проста, но работать она может лишь солнечным летом.

При включении коллектора в двухконтурное техническое сооружение все гораздо сложнее, но и диапазон пригодных для применения дней существенно увеличен. Коллектор обрабатывает только один контур. Преобладающая нагрузка возлагается на основной отопительный агрегат, работающий на электроэнергии или любом виде топлива.

Для изготовления солнечного коллектора можно воспользоваться готовой схемой, можно построить собственную пилотную модель и опробовать ее на практике (+)

Несмотря на прямую зависимость производительности солнечных приборов от количества солнечных дней, они востребованы, и спрос на солнечные устройства стабильно повышается. Популярны они среди народных умельцев, стремящихся направить все виды природной энергии в полезное русло.

Отделка

Вообще отделка — это альфа и омега любого ремонта. Пойдём, как учили, сверху вниз — от потолка к полу. Отличные материалы для оформления потолка:

  • Штукатурка — может быть любая: как фактурная, так и самая обычная.
  • Краска — выбирается после того, как определена основная гамма комнаты. Пусть она будет в тон одному из основных цветов. Лучше взять матовую. Блеска и гламура в комнате и так с лихвой.
  • Натяжной потолок — в идеале тканевый и с крупным плетением.

Стены «одевают» в обои со всевозможным орнаментом: не важно, изображён там крупный рисунок или мелкий, яркий или едва заметный. Для отделки покрашенных стен выбирают лепнину или роспись

Можно прибегнуть к помощи трафарета. Если выбор пал на штукатурку, то почему бы не сделать её с рельефом?

@premiumdeko.ru

На пол стелют паркет, плитку или ламинат. Также можно использовать мозаичные узоры из камня, дерева. Всё это будет вполне в рамках стиля.

Режим стагнации солнечных установок: причины и последствия

Современные гелиотермальные приборы имеют множество модификаций.

В простейшем варианте они состоят из:

  • плоских или трубчатых панелей для сбора лучистой энергии солнца;
  • бака-накопителя для аккумулирования подогретой воды;
  • бака-теплообменника;
  • трубопроводов и запорной арматуры.

Упрощенная схема работы

На плоскости крыши или в специальных фермах монтируются металлические пластины, под которыми проложены трубы с рабочей жидкостью. Коллектор поглощает электромагнитные волны от инфракрасных до ультрафиолетовых и, по сути, выступает мини-теплицей, аккумулирующей теплоэнергию и передающей ее низкозамерзающему раствору, обычно это пропиленгликоль. Нагретый носитель движется к баку-накопителю и совмещенному с ним баку-теплообменнику, нагревая воду, поступающую оттуда к домашним обогревательным приборам и в сантехнические краны.

К сожалению, в функционировании классических фотоколлекторов имеется слабое звено, так называемое явление стагнации (в переводе с латыни – застой). В данном случае застой связан с летним периодом, когда система вырабатывает теплоэнергию, не нужную в полном объеме в это время: в жару отпадает необходимость в обогревании жилища и использовании большого количества нагретой воды.

Если вырабатываемое тепло расходуется не полностью, например, по сезонным причинам или из-за отсутствия хозяев, может произойти закипание терможидкости. Возникает паровая пробка, которая останавливает работу всей гидросистемы, прекращая циркуляцию раствора. Необходима пауза, чаще всего ночь, чтобы произошла конденсация пара и гелиоустановка охладилась. Это означает дискомфорт для потребителя, так как для подачи горячего водоснабжения придется подключать дополнительный источник, например, электрический или газовый котел, пока ночная прохлада не остудит антифриз.

При частом возникновении такой ситуации, терможидкость меняет свою консистенцию, сгущается и превращается в желеобразную массу, забивая трубы коллектора. Его промывка достаточно трудоемкая и сложная процедура. Изменение концентрации пропиленгликоля меняет его низкотемпературные свойства, что может привести к замерзанию труб и разрушению дорогостоящего оборудования. Таким образом, стагнация является наиболее вероятной причиной аварий и выхода из строя всей отопительной системы.

Варианты реализации гелиосистемы для поддержки отопления

Для реализации гелисистем для отопления необходимо использовать комбинированные баки аккумуляторы. Или отдельные баки, которые накапливают солнечную энергию в течении дня.

Варианты схем реализации гелиосистемы с поддержкой отопления с суточным аккумулированием энергии

Объем таких баков аккумуляторов рассчитывается исходя из количества солнечных коллекторов, и ни в коем случае не определяется от объема теплоносителя в отопительной системе. В среднем это значение равно 75 л на один метр квадратный площади абсорбера солнечных коллекторов.
Следует так же отметить, что для максимального эффекта применения солнечных коллекторов для отопления, необходимо использовать низкотемпературные отопительные системы такие как тёплый пол и т.д. Чем ниже рабочая температура гелиосистемы, тем выше её КПД.

КПД гелиосистемы в зависмости от типа системы отопления

Оптимальный рабочий диапазон для поддержки отопления составляет 30–40 °C (соответствует температурному графику теплых полов).

Пример: солнечные коллекторы для отопления дома 200 м² в г. Киев

Рассмотрим пример, когда солнечные коллекторы для отопления устанавливаются в доме с отапливаемой площадью 200 м². Система распределения энергии комбинированная: радиаторы и теплые полы. Все расчеты горячего водоснабжения проводятся с учетом потребностью 200 литров воды с температурой 55 °С в сутки.

Количество затраченного тепла сильно зависит от качества утепления дома. К примеру для энергопассивного дома необходимо затратить всего 30 кВтч на один метр квадратный площади за отопительный сезон. А для слабо утепленного дома может понадобиться более 200 кВтч тепла на один метр квадратный площади дома за сезон.

Удельные теплопотери

Предположим, что дом построен по современным технологиям и отвечает требованиям по энергосбережению. Средние затраты энергии на теплоснабжение за сезон — 100 кВтч/ м². Соответственно в среднем за отопительный сезон для системы теплоснабжения дома понадобится приблизительно =  200 м² * 100 кВтч/ м² = 20 000 кВтч тепла.
Для расчетов были выбраны плоские солнечные коллекторы фирмы Vaillant auroTHERM VFK 145V со следующими параметрами:

  •  Площадь абсорбера – 2,35 м²;
  •  Оптический КПД – 0,79;
  •  Коэффициент тепловых потерь К₁ — 2,41 Вт/м²К;
  •  Коэффициент тепловых потерь К₂ — 0,049 Вт/м²К.


Внешний вид солнечных коллекторов

Рассмотрим три варианта гелиосистем. В первом варианте установлено 5 солнечных коллекторов с общей площадью абсорбера 11,75 м², во втором 10 коллекторов (23,5 м²) и 3-й вариант с 15 коллекторами суммарной площадью 35,25 м².
Расчеты приведены для г. Киев с учетом усредненной базы данных солнечного излучения и окружающей температуры для соответствующей климатической зоны.

График выработки тепловой энергии солнечными коллекторами на отопление

Как видно из графиков максимальная выработка солнечной энергии приходится в летний период года. Энергия, выработанная солнечными коллекторами для отопления, лишь частично покрывает потребности в тепле и практически полностью покрывает нагрузку по горячему водоснабжению.

Максимальная экономия приходится на межсезонье и незначительна в зимние месяцы года. Чем больше общая полезная площадь солнечных коллекторов, тем больше значение экономии энергоресурсов.

Диаграмма покрытия отопительной нагрузки за счет солнечных коллекторов

В каждом из вариантов солнечные коллекторы вырабатывают для отопления различное количество тепловой энергии в процентном соотношении относительно общей потребности в тепле. Основной задачей проектирования таких солнечных систем является подбор оптимального значения замещения (экономии) основного источника энергии с учетом капитальных затрат.  Для этого необходимо сопоставить денежные затраты на установку гелиосистемы и ожидаемый эффект. В некоторых случаях даже экономия в 10% может быть выгодной например для того чтобы сократить потребления газа и перейти в более низкую тарифную сетку.

Умелец превратил пианино в письменный стол: результат превзошел самые смелые ожидания

Принцип работы и виды солнечных коллекторов

Настала пора сказать несколько слов об устройстве и принципе работы солнечного коллектора. Основным элементом его конструкции является адсорбер, представляющий собой медную пластину с приваренной к ней трубой. Поглощая тепло падающих на нее солнечных лучей, пластина (а вместе с ней и труба) быстро нагревается. Это тепло передается циркулирующему по трубе жидкому теплоносителю, а тот в свою очередь транспортирует его далее по системе.

Способность физического тела поглощать или отражать солнечные лучи зависит, прежде всего, от характера его поверхности. Например, зеркальная поверхность отлично отражает свет и тепло, а вот черная, напротив, поглощает. Именно поэтому на медную пластину адсорбера наносится черное покрытие (простейший вариант – черная краска).

Принцип работы солнечного коллектора

1. Солнечный коллектор.2. Буферный бак.3. Горячая вода.

4. Холодная вода.5. Котроллер.6. Теплообменник.

7. Помпа.8. Горячий поток.9. Холодный поток.

Увеличить количество получаемого от солнца тепла можно и путем правильного подбора стекла, прикрывающего адсорбер. Обычное стекло недостаточно прозрачно. Кроме того, оно бликует, отражая часть падающего на него солнечного света. В гелиоколлекторах, как правило, стараются использовать специальное стекло с пониженным содержанием железа, что повышает его прозрачность. Для снижения доли отраженного поверхностью света на стекло наносят антибликовое покрытие. А чтобы внутрь коллектора не попадали пыль и влага, которые тоже снижают пропускную способность стекла, корпус делают герметичным, а иногда даже заполняют инертным газом.

Несмотря на все эти ухищрения, КПД солнечных коллекторов все же далек от 100%, что связано с несовершенством их конструкции. Часть полученного тепла нагретая пластина адсорбера излучает в окружающую среду, нагревая контактирующий с ней воздух. Чтобы свести к минимуму теплопотери, адсорбер необходимо изолировать. Поиск эффективного способа теплоизоляции адсорбера привел инженеров к созданию нескольких разновидностей солнечных коллекторов, самыми распространенными из которых являются плоские и трубчатые вакуумные.

Плоские солнечные коллекторы

Плоские солнечные коллекторы.

Конструкция плоского солнечного коллектора предельно проста: это металлический короб, покрытый сверху стеклом. Для теплоизоляции дна и стенок корпуса, как правило, используется минеральная вата. Вариант этот далеко не идеален, поскольку не исключен перенос тепла от адсорбера к стеклу посредством воздуха, находящегося внутри короба. При большой разнице температур внутри коллектора и снаружи потери тепла бывают довольно существенными. В результате плоский гелиоколлектор, прекрасно функционирующий весной и летом, зимой становится крайне неэффективным.

Устройство плоского солнечного коллектора

1. Впускной патрубок.2. Защитное стекло.

3. Абсорбционный слой.4. Алюминиевая рама.

5. Медные трубки.6. Теплоизолятор.7. Выпускной патрубок.

Трубчатые вакуумные солнечные коллекторы

Трубчатые вакуумные солнечные коллекторы.

Вакуумный солнечный коллектор представляет собой панель, состоящую из большого количества сравнительно тонких стеклянных трубок. Внутри каждой из них расположен адсорбер. Чтобы исключить перенос тепла газом (воздухом), трубки вакуумированы. Именно благодаря отсутствию газа вблизи адсорберов, вакуумные коллекторы отличаются низкими теплопотерями даже в морозную погоду.

Устройство вакуумного коллектора

1. Теплоизоляция.2. Корпус теплообменника.3. Теплообменник (коллектор)

4. Герметичная пробка.5. Вакуумная трубка.6. Конденсатор.

7. Поглощающая пластина.8. Тепловая трубка с рабочей жидкостью.

Солнечные коллекторы для отопления дома: разновидности установок

По конструктивному исполнению солнечные коллекторы могут быть плоскими или вакуумными. Последний вариант является более распространенным типом, который характеризуется простотой монтажа, высокой эффективностью, способностью обеспечить необходимым количеством тепла весь дом. Вакуумный солнечный коллектор для отопления дома, цена которого превышает стоимость плоского изделия, представлен сложной конструкцией, которую можно использовать для полноценного обогрева помещения и нагрева воды в любой сезон года.

По типу конструкции солнечные коллекторы бывают вакуумными и плоскими.

Существует особый тип установки, который называется коллектор-концентратор. Он представляет собой систему параболических отражателей, которые располагаются на одной криволинейной поверхности, где концентрируется в определенных точках солнечный свет. Для получения максимального эффекта необходимо изменять вслед за движением солнца положение устройства, которое может находиться в двух плоскостях.

В зависимости от теплоносителя различают жидкостные и воздушные конструкции. В первом случае используется дистиллированная вода или антифриз, а во втором – нагретый воздух.

По варианту применения теплоносителя различают пассивные и активные системы. В первом варианте солнечный коллектор используется совместно с баком накопителем. Такая система приемлема для горячего водоснабжения и не комплектуется дополнительными инженерными элементами. Активный вариант предполагает установку солнечного коллектора и других технических устройств, таких как насос, бак-накопитель, защитные клапаны, дополнительные приборы нагрева теплоносителя. Такая система может применяться и для горячего водоснабжения, и для отопления дома.

По виду использования коллекторы могут быть пассивными и активными.

Способ передачи тепла может быть косвенным или прямым. Первый вариант предполагает наличие аккумулирующего бака, в котором выполняется передача тепловой энергии, полученной наружным контуром от солнечного излучения, внутреннему контуру, циркулирующему в системах отопления и ГВС. В прямоточных системах, которые применяются для горячего водоснабжения, циркуляция воды в контуре коллектора происходит под воздействием разности температур и благодаря наличию дополнительных элементов в виде клапанов и кранов.

Гелиосистема своими руками

При наличии навыков работы с различным ручным инструментом, начальными знаниями физических свойств различных веществ, а также наличии свободного времени, можно сделать гелиосистему своими руками.

Здесь может быть несколько вариантов создания и построения подобной установки, это и сборка конвектора из заводских комплектующих или его изготовление полностью из подручных средств или создание простых установок, работающих на свойствах жидкостей и атмосферного воздуха.

К таким относятся ниже рассмотренные варианты конструкции.

Термосифонная гелиосистема

Термосифонная гелиоустановка, это простейшая система, работающая на свойствах жидкости (воздуха) циркулировать в системе без установки специального оборудования (насоса), что обусловлено их естественной конвекцией. Данную систему можно использовать в системах горячего водоснабжения и системах подогрева воды в бассейне.

Плотность тепловой и холодной воды различается, что определяет ее перемещение в замкнутом пространстве – горячая вода поднимается вверх, холодная опускается вниз. Схема работы термосифонной системы приведена на ниже следующей схеме:

Для самостоятельного изготовления подобной системы, понадобятся:

  • Две емкости (бочки), одна из которых служит накопителем холодной воды и располагается несколько выше конвектора и второй емкости, служащей распределителем нагретой воды.
  • Система труб, обеспечивающих соединение всех элементов конструкции в единое целое.
  • Конвектор, который собирается из подручных средств.

Для изготовления конвектора можно использовать пластиковые бутылки, из которых собирается батарея. Подобных батарей может быть несколько, и они между собой соединяются последовательно (как на схеме, приведенной выше).

Собранные батареи из бутылок можно поместить в отдельный корпус, в который для большего поглощения солнечного тепла, помещается утеплитель, хотя можно сделать и без него.

Соединение бутылок должно быть герметичным, чтобы исключить протекание воды в местах их соединения.

Кроме пластиковых бутылок можно использовать водопроводный шланг, укладываемый змейкой в смонтированном корпусе или иные подручные материалы, которые способны нагреваться под воздействием солнечных лучей, и которые можно герметично соединить между собой.

Корпус конвектора изготавливается из имеющихся материалов (дерево, пластик, металлический или иной профиль), после чего собранная конструкция размещается на максимально освещенном участке и все ее элементы, соединяются в единое целое.

В емкость накопитель наливается холодная вода и по истечении определенного времени, из емкости распределителя, можно осуществлять разбор нагретой воды.

Воздушная гелиосистема

Одной из простых конструкций, которую можно также изготовить самостоятельно, является воздушная гелиосистема. Данная установка может быть использована для частичного обогрева в южных регионах страны, где воздух прогревается значительно, а потребность в обогреве жилья – невелика.

Принцип действия воздушного коллектора, аналогичен принципу действия термосифонной системы, рассмотренной ранее. Отличительная особенность лишь в теплоносителе, что отражается на устройстве коллектора.

Для того, чтобы изготовить самостоятельно воздушный коллектор можно использовать подручные материалы, это: водопроводные трубы или жестяные банки, профилированный металлический лист или иной материал имеющий профильное сечение.

Схема работы воздушного коллектора приведена на схеме:

Из имеющихся в наличии материалов, как и в случае с термосифонной системой, изготавливается корпус коллектора. При помощи металлического профиля, жестяных банок или путем использования водопроводных труб, создаются ребра, разделяющие воздушный поток на отдельные составные части.

Внутри корпуса укладывается утеплитель, а с наружной стороны, корпус закрывается стеклом, служащим теплоизолятором внутреннего воздуха от наружной среды.

При использовании металлического профиля или иной конструкции, как на приведенной схеме, ребра, разделяющие потоки воздуха могут быть совмещены с панелью, являющейся приемником солнечного тепла. При использовании жестяных банок и водопроводных труб, эту функции выполняют они сами.

С торцов корпуса предусматриваются места крепления коллекторов друг с другом (если их несколько) и для крепления с воздуховодами, обеспечивающими подачу холодного и отвод теплого воздуха.

Поделитесь в социальных сетях:FacebookXВКонтактеredditWhatsApp
Напишите комментарий